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1 Introducao

The mechanism by which some materials form permanent magnets is called Ferromagnetism.
Among the several types of magnetism, (paramagnetism, diamagnetism, antiferromagnetism. ..) Fer-
romagnetism is the strongest type. The term Ferromagnetism was originally used for any material
that could exhibit spontaneous magnetization: a net magnetic moment in the absence of an exter-
nal magnetic field. There are two levels of magnetic alignment that result in this behavior. One
is ferromagnetism in the strict sense, where all the magnetic moments are aligned. The other is
ferromagnetism, where some magnetic moments point in the opposite direction but have a smaller
contribution, so there is still a spontaneous magnetization.

The simplest description of this phenomenon is the Ising model, which consists, very succinctly,
in a system represented by N spins that can be in one of two microstates spinup = +1, spindown = —1
under the influence of an external magnetic field,H. This model is extremely important not only
because there is a point where spontaneous magnetization occur by the alignment of all the spins
(even when a magnetic external field is not present), but also because is essential in the study of
second order phase transitions. Therefore, in this project we will try to simulate computationally the
Ising Model using Monte Carlo methods with Metropolis sampling, hoping in that way be able to
illustrate the physical phenomenon of ferromagnetism.

1.1 Origin of Ferromagnetism

Magnetism arises due to quantum-mechanical effects: spin and the Pauli exclusion princi-
ple. An electron, due to its spin, carries a magnetic dipole moment, producing a magnetic field. The
spin of the electron can only be in a state: "up” or ?down”. Besides the spin of the electron, the orbital
angular momentum of the electron about the nucleus also contributes to the ferromagnetic behaviour.
The alignment of these magnetic dipoles in matter generates a larger macroscopic magnetic field.

Because the electrons all exist in pairs with opposite spin, every electron’s magnetic moment is
cancelled by the opposite moment of the second electron in the pair. Only atoms with unpaired spins
can have a net magnetic moment. The unpaired spins tend to align in parallel to an external magnetic
field (paramagnetism). However, in ferromagnetism, the dipoles tend to align spontaneously, giving
rise to a spontaneous magnetization, even without an external field.

For a ferromagnet, an increase in temperature means an increase in thermal motion, or entropy,
that competes with the ferromagnetic tendency for dipoles to align. Beyond a certain temperature,
the Curie temperature, there is a second-order phase transition and the system can no longer sustain
a spontaneous magnetization, although it still responds paramagnetically to an external field. Below



that temperature, there is a spontaneous symmetry breaking and magnetic moments become aligned
with their neighbors. The Curie temperature itself is a critical point where the magnetic susceptibility
is theoretically infinite and domain-like spin correlations fluctuate at all length scales.

The study of ferromagnetic phase transitions, via the Ising model, came to show that mean
field theory approaches fail to predict the correct behaviour at the critical point, and these have to
be replaced by renormalization group theory.

1.2 Ising Model

Experiments conducted in the neighbourhood of critical points suggest that critical exponents
assume the same universal values, contradicting the classical theories. The values of the critical points
in this context depend on: the dimension of the physical systems, the dimension of the order parameter
and the range of microscopic interactions. In order to construct a microscopic theory of the critical
behavior, we analyze very simple models, such as the Ising model. The Ising spin Hamiltonian is
given:

H:_JZSiSj_hZSi (1)
<ij> i
where s; is a random variable assuming the values £1 on the sites ¢ = 1,2,..., N of a d-
dimensional lattice and J is the coupling constant. The first term represents the interaction energies
introduced to bring about an ordered ferromagnetic state (if J > 0). The second term involves the
interaction between the applied field h and the spin system. In order to solve the Ising problem, we
have to obtain the canonical partition function:

Zy = Z(T,h,N) = Y exp(—BH), (2)
s==1
where the sum is over all configurations of spin variables. From tils partition function, we have
the magnetic free energy per site: (demonstrated in the 2nd class, using the transfer matrix method)

g=g(T,h) =limy_co [ - BiVanN} (3)

this one-dimensional solution sees the free energy as an analytic function of T' and h, which
precludes the existence of a spontaneous magnetization (and of any phase transition) (Pierls argu-
ment). Onsager obtained an analytical solution for the Ising model on a square lattice, with nearest
neighbours interactions and no external field. For T — T the specific heat diverges according to a
logarithmic asymptotic form:

Cy =0~ 1In|T —T¢| (4)
. o kgTo 2 : ;
with a well-defined critical temperature, ~27< = In(i+v3)’ meaning that the free energy is not

analytic at T¢.

The solution of the Ising model in three dimensions remains an open problem. There have
been many efforts to obtain long series expansions for several thermodynamic quantities associated
with the three-dimensional Ising model. From refined asymptotic analyses of these series, we obtain a
range of values for the critical exponents in agreement with experimental measurement, represented
in Table 1.



Landau | Ising (d = 2) | Ising (d = 3) | Experiments
B 1/2 1/8 ~ 5/16 0.3—-0.35
’y 1 774 ~5/4 12— 14
0 3 15 ~ b5 4.2 -438
e 0 0(log) ~1/8 ~0

Table 1: Table with the values for the critical exponents 3, v, § e a obtained from an asymptotic
analysis for theirs series expansions, and by experiments (last column).

1.3 Mean Field Theory

In this Section, we are discussing various approaches to obtain a mean-field solution to the Ising
model, carrying out the approximations that are commonly referred to as “mean-field approximations”.

First, we decompose the spins s; into their mean value (the magnetization), and fluctuations
around it s; = m + ds;. Then we apply two approximations:

1. We neglect the fluctuations: Js; = 0, meaning that ds;ds; = 0. So, Equation 1 becomes:

H=-J Z (m2 + mdés; +mds; + 0s;0s;) — hz S; (5)

<ij>

2. We assume the system to be invariant under translation (big aproximation), meaning that
ds; = 0sj. So, from the previous equation we get:

H=-J Z mQ—JmZ%si—thi

<ij> i

(6)

The coordination number, z, describes how many pairs of interactions exist in a lattice (1D:
z=2;2D:z =4; 3D:z =6...). There are Nz/2 pairs of interactions in an N-dimensional lattice. So,
we have:

H:—JNZm2—szZ5Si—thi:—JNZm2—Zsi(h—sz) (7)

2 2

%

Which implies that:

H ~ —Zsi(h—i-sz)

%

(8)

Where h corresponds to the external field and Jmz to an internal field, which, added together,
correspond to the Mean Field. Now we can proceed to calculate the Mean Field magnetization,
using the partition function. We find that:

tanh[B(Jmz + h)] =m 9)

This is a transcendental equation, that can be solved using graphical methods: When 8Jz =
1 <=> Jz = kT <=> T¢ = Jzkp. Note that T depends only on the coordination number, z,
of the lattice. However, z alone cannot define a lattice uniquely. For example, triangular lattice
in 2 dimensions and simple cubic lattice in 3 dimensions both have coordination number z = 6.
To understand why the predictions for T get better as z increases, we must take into account the
approximations that were made. Namely, the neglecting of the fluctuations. This approximation has
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Figure 1: Graphic solution for Equation 10 for the 3 different cases T'< T, T =To and T > T¢.

a bigger influence when there are fewer first neighbors (the only ones that are considered in the Ising
model). Since the fluctuations correspond to a random variable, that deviates s; from m, the more
first neighbors the less the value of s; will strand away from the average value, m.

Landau was motivated to suggest that the free energy of any system should be analytic and
that it obeys the symmetry of the Hamiltonian. Given these two conditions, one can write down (in
the vicinity of the critical temperature, T¢) a phenomenological expression for the free energy as a
Taylor expansion in the order parameter. For example, expressing the free energy in even powers of
the magnetization, and retaining the terms of 2nd and 4th order:

f(m) = fo +am? +bm* (10)

Where the coefficient of the highest even power of the order parameter (b, in this case) must
be positive, so that the free energy corresponds to a minima in an equilibrium point. The parameter
a measures the proximity to the critical point.

1.4 Renormalization Group Theory

RG theory is useful since the Mean Field Theories don’t account for fluctuations, and these
cannot be neglected for systems with dimensions that are inferior to the critical dimension (d = 4).
The renormalization group is intimately related to scale invariance: symmetries in which a system
appears the same at all scales. The RG theory can be applied to the Ising model, according to the
following procedure: 1) Coarse Graining; 2) Obtain a partition function that resembles in shape to
the original Ising model partition function for N spins; 3) Rescaling. This theory explains the scaling
hypothesis, the universality classes and correctly predicts critical exponents.

2 The Ising Model and The Metropolis Algorithm

Previously we introduced the Ising Model and we outlined its importance in the description of
Ferromagnetism. However, the Ising Model can often be very difficult to evaluate numerically since
typically there are many states in the system. For instance, considering a system with L spins where



each spin can assume the values —1, 1, then there are 2% possible configurations for it. Which even
for a small lattice represents a huge number. This motivates using Monte Carlo methods to simulate
the Ising Model.

The basic idea behind Monte Carlo algorithms is the simulation of the random thermal fluc-
tuation of a system from state to state over the course of an experiment [1]. In order to do so in
a Monte Carlo calculation, a model of the system is created and then it passes through a variety of
states in such a way that the probability of the system being in any particular state at a given time ¢
is equal to the weight w,(t) which that state would have in the real system. To achieve this we have
to choose a dynamics for the simulation, i.e. a rule for transiting from one state to another with an
appropriate probability, according to the real system. The choice of these dynamics distinguish the
Monte Carlo methods. In this work, we approached the Ising model with the Metropolis algorithm,
which is described in the following section.

2.1 Metropolis Algorithm

The method starts by choosing a set of selection probabilities g(u — v), that represent the
probability of transition from state u to state v, p — wv. Then it uses acceptance probabilities
A(p — v) to make the decision of moving the system to the new state or not. This translates the
idea that if we start off in a state and our algorithm generates a new state v from , then we should
accept that state and change our system to the new state v a fraction of the opportunities, A(u — v).
The rest of the chances, we keep the state . Note that, we can choose any value for the acceptance
ratio between 1 and 0, however, A(u — v) = 0 means that P(u — v) = 1, therefore we should leave
this case. In addition, we should remember that the acceptance ratio must have such a value that the
detailed balance is satisfied. This is equivalent to say that the Equation 11 must be fulfilled.

P(p—v)  glp—v)Ap —v)

Plo o p)  glv = A = p) ()

Consequently, if the new state is accepted, the algorithm moves to the next step and repeats
the process by choosing a new state with probability g(u — v), and then deciding to accept it or
reject it according to the acceptance probability, A(u — v). If the new state is accepted the computer
changes the system to it, else, it stays in the original state . Posteriorly, the process is repeated again
and again.

Regarding the selection probabilities g(u — v), this should be chosen so that the condition of
ergodicity, the requirement that every state must be available from every other in a finite number of
steps, is met. Which still leaves quite a space to decide how g(u — v) is chosen. However, it is known
for systems in thermal equilibrium, that the energy fluctuations are small in comparison with the
energy of the entire system. The real system spends most of its time in a subset of states with a narrow
range of energies and rarely makes transitions that change the energy of the system dramatically. This
is essential, so that we don’t spend to much time of simulation considering transitions to states with
an energy that is very different from the energy of the present state. The simplest way of achieving
this in the Ising Model is to consider only those states which differ by the flip of a single spin, single-
spin-flip dynamics. Doing this, we guarantee that only small changes of energy take place and at
the same time that from any state of the system we can get to any other state.

Actually, by implementing these dynamics, the amount of energy change between the current
state, F,, and any possible new state’s energy, E,, is 2J (between the spin we choose to flip and each
one of its neighbors). Therefore, in a lattice with coordination number z, the maximum difference
in energy would be 2Jz. Note that in the method, all sites of the lattice have the same number of
neighbors due to the implementation of periodic boundary conditions.

In the Metropolis algorithm the selection probabilities g(u — v) for each of the possible states
v are all chosen to be equal. Thus if there are N sites on the lattice, using single-spin-flip as the



only way of transition between states, there are N flips we can perform and therefore N possible
states,v, which we can reach from a given state, u. Being the selection probabilities equal to all spins,
consequently there are N selection probabilities g(x — v) which are non-zero and take the value,

oln—v) = & (12)

Fulfilling the detailed balance condition presented in Equation x, with these selection proba-
bilities the follow equation must hold:

Pu—=v) glu=0)Ap—v)  Aw—=v) _ _sm.-E) (13)
Pw—p)  glv—=p)Alv—p) Al —p)

Thus, we want to select the acceptance probability for our algorithm to satisfy:

Alp — v) — o= B(Eu—Ey)

A p) 19

To maximize the acceptance ratios, Metropolis methods sets the larger of A(u — v) or A(v — p)
to be 1 (largest value possible) and then adjusts the other to satisfy the constraint presented in
Equation 14. By this reason the acceptance algorithm is:

e AEE) i B, — E, >0

. (15)
1 otherwise

Am%m:{
Which means that if we select a new state which has an energy lower than or equal to the
present one, we should always accept the transition to that state. If it has a higher energy then we
maybe accept it, with the probability given above. In conclusion, this is the Metropolis algorithm for
the Ising model with single-spin-flip dynamics which is characterized by the Equation 15.
To summarize, the Metropolis algorithm to simulate the Ising model goes succinctly through
the following steps:

1. Pick a spin site of the lattice with size L, using selection probability g(u — v) and calculate,
according to its neighbors, the contribution to the energy involving this spin,£);;

2. Flip the value of the spin and calculate the new contribution, F,;

3. If the new energy is smaller than the energy associated to the previous state, this is if £, —F,, <=
0, then we keep the spin flipped;

4. By other hand if the energy of the new state is greater, E, — £, > 0, then we only keep the
flipped state with probability A(yu — v) = e BEv—Ey)

5. The same process is repeated until the thermal equilibrium had been reached.

2.2 Limitations of the Metropolis algorithm: Critical slowing down

It is important to note that the Metropolis algorithm does not perform well around the critical
point due to the phenomena of critical slowing down.

When we are near a phase transition, the autocorrelation time, say 7, is very long (according
to Landau theory of phase transitions, the correlation length (in the disordered phase) is € ~ ﬁ,
and at the phase transition a — 0 (Equation 9, so €). In a context where we are doing Monte
Carlo simulations on a ferromagnet near T, where T¢ is the temperature of phase transition, we are
studying the observable M, which is the total magnetisation. If we are in a microstate characterized
by a magnetization far from the average magnetization, a long 7 means that it will take a long time



(a lot of iterations, then) for the simulation to access microstates with a magnetization that is near
the average magnetization. The microstates with a magnetization nearer to the average value of the
magnetization have greater statistical relevance. So, for microstates with M far from its average value,
a longer time of sampling is required in order to gather good statistics with MC simulations (slowing
down). Other techniques, such as cluster algorithms, are required in order to resolve the model near
the critical point.

3 Our implementation of the Metropolis algorithm for the Ising
Model

Above we explained the ideas, assumptions and the methodology behind the Metropolis algo-
rithm in the simulation of the Ising Model. Therefore, we are now in conditions to explain how we
implemented our own Metropolis algorithm, step by step, and present our results and compare them
with the exact solutions for the Ising model.

3.1 Metropolis simulation

The main features of the Metropolis simulation were already pointed out. We will now explain
the particular approaches that were performed in order to accomplish a correct implementation of
this methodology. Before we start, it is important to clarify that for simplicity reasons, we assumed
the external magnetic field, B, to be zero. Even though that the case B # 0 is not much harder to
simulate, using B = 0 allows us to reach the results we are looking for. Consequently, the Hamiltonian
of our simulated system is then given by:

H=-J]> sis (16)
<ij>

The first step of the simulation consisted in creating a lattice of size L with LxL = N sites,
with each one being able to take one of the values £1. We did this by creating a single integer array
with size N. As mentioned previously, it important for the simulation to fix the same number of
neighbours for all the spins in the lattice. For this reason, usually periodic boundary conditions are
imposed to the array. This is, we specify that the spins on one edge of the lattice are neighbours of
the corresponding spins on the other edge. However, to save computational space and time we used a
single coordinate ¢ to create our lattice; and therefore to guarantee the periodic boundary conditions
we used a variation of these, the helical boundary conditions. To understand how these conditions
work and how they are implemented, let’s consider the case of a two-dimensional LxL lattice, just
like the one we simulated. If this is the case then i (counter variable) would run from 0 to L% — 1.
Which means that regardless the actual dimension of the lattice it can always be represented by a one-
dimensional array, and the value of the spin i can is simply given by s[i]. And then, also the wrapping
around the lattice, to ensure that all the spins have the same number of neighbours, becomes easily

given for each spin ¢ by the following expressions:

(i + 1)modL? (17)
(i = LYmodL?

Next we needed to decide the starting value for each one of the spins in our lattice. Once again
to simplify we decided to start our system at temperature 7" = 0.1, that all the spins were aligned
to the top (all up) and consequently all the sites in the lattice had value +1. In other words, even
though that we did not start our system with a grounded temperature (7' = 0 or 7' = o0) we assumed



the configuration of nule temperature as our initial state. The justification for doing this is clear: we
hope to save time by making the system reaching its final equilibrium state faster with this initial
state than with either a T'=0 or T'= co. And at the same time is right to consider that from all the
range of temperatures to which we will submit our system to, the initial one will be the closer state
to this type of grounded equilibrium, all spins aligned.

With the lattice generated and each of the neighbours to all the spins in it defined, as well
their initial values, we started our simulation. Here the first step was to generated a new state, called
v in the previous explanations, by exclusively making a spin flip. To implement this, then we just
generated a random number k between 0 and N — 1, that would correspond to the lattice site to be
flipped. As explained before, then we needed to calculate the difference between this new state and
the actual one to decide if the flip would actually occur or not. Considering that flipping the spin
k would only change its value, sj, and not the value of its neighbours, s;, so that s{ = s'. Thus to
calculate this energy difference we performed the following approximation:

EU—Ep:—JZst;-)—i—JZsfs?:—J Z st (s — sy) (18)
<1j> <ij> in.ntok
Note that if s/ = 41, than after spin k has been flipped we must have sj = —1,s0 that
sy — SZ = —2. On the other hand, if sz = —1 then s} — SZ = 42, therefore we can write:
E,—E,=2Js), Y s (19)
in.ntok

When we perform these approximations instead of summing over all the %N z spins in the system
to calculate the energy difference, we are exclusively summing over all z terms, which is obviously
a much more efficient way of doing it. After this calculation, the implemented code performs an
evaluation on keeping the new state or the previous one by applying the set of rules mentioned above:

o If £, — E, <0 we definitely accept the move and flip the spin s, — si;
o If £, — E, > 0 we flip it with a probability of e BEv—Ey)

For the last situation, the way we found to perform the evaluation of flipping or not the spin,
was by generating a random number r between 0 and 1 and then evaluating if the number was greater
or smaller than the probability A(u — v) = e #Fv=Ew) If r < A(p — v) then we flip the spin, if it
is not, we leave the spin alone.

And this is our complete algorithm, that repeats these same steps over and over again for a huge
number of times (~ 10000000) in order guarantee that the equilibrium is reached, before performing
measurements of the system. After attaining equilibrium, the probability of finding the system in any
particular state proportional to the Boltzmann weight e #u,

3.2 Results

Our Ising model simulation using Monte Carlo methods with Metropolis sampling was devel-
oped in C++ and the code can be found in the Annexes 1. Also, in the Annexes we find a table with
the variables and what they represent, to make the code interpretation easier.

In this work we performed the explained simulation for different sizes lattices L = 6,12, 18 and
we calculated values of the energy, F, magnetization,M, specific heat, C, and magnetic susceptibility,y
, (all calculated per unit of spin) of the system, through the following expressions:

1. E = =8> where H where H is the energy of the system given by the Equation 16. However,
performing the Hamiltonian calculation to every state of the system is not a very efficient way



of calculation the energy of the system. Therefore, the clever way of doing it is to calculate the
energy of the Hamiltonian, H, at the very start of the simulation, and then every time we flip a
spin the energy of the new system’s state can be calculated by making use of the AE perform
in each step.

E,=E,+AFE (20)
Then,
< E, >
FE=— 21
+ (21)
2. M = %j\ﬁ where M, = >, s5;™". Note that once again calculate the sum over all spins to

calculate the magnetization in every iteration step is not a very efficient way of measuring it.
Consequently, one more time what we indeed calculate was

I
AM:MU—M“:ZSf—ZZSZ—SZZQSz (22)
i

%

to every single time a spin was flipped. And then this value is added to the initial magnetization
of the system.

M, = MM+AM:M#+25}€’ (23)
_ <H?*>-—<H>?.
3. C= N2 ;
o <S82>—<5>2
4o x = =257

It is important to note, that the averages < A > are calculated after leaving the system relaxate
for nrelaxr = 107 iteration steps (“Monte Carlo steps”) and measuring during the next nmonte = 107
steps according to the expression:

nmonte
1

A>= —— A, 24
<4z nmonte nz:l ( )

The obtained results are represented in the graphics presented below. All quantities were
manipulated in normalized units, J = 1 and Kp = 1. All the data was collected for the same range
of temperatures, 7' = [0.1,5]. In the Figure 2 are presented the results for the Energy per spin in
function of the Temperature, E(T).

In Figure 3 we have the results for the Magnetization per spin in function of the Temperature,
M(T).
In Figure 4 we found the results for the specific heat per spin also in function of the temperature,
C(T). And for last, in Figure 5 we can analyse the values for the magnetic susceptibility per spin in
function of the temperature,x (7).

Knowing that both the magnetic susceptibility, x(7"), and the specific heat, C(T), diverge in
the critical point (T¢) for the thermodynamic limit L — oo. Therefore, approximations for the exact
value of the critical point for the Ising model were calculated in function of the lattice size, T (L), by
calculating the maximums for both parameters. The estimations found for these values are presented
in the Table 2.
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Figure 2: Energy per spin, F(T) in function of the temperature, T = [0.1, 5] for 3 different lattice sizes
L=6,12,18

Magnetization per spin

O —5 1 15 2 25 3 35 4 45 5

Figure 3: Magnetization per spin,M(T") in function of the temperature, T = [0.1,5] for 3 different
lattice sizes L = 6,12, 18
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Figure 4: Specific heat per spin,C'(T) in function of the temperature, T' = [0.1, 5] for 3 different lattice
sizes L = 6,12, 18

Magnetic susceptibility per spin
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Figure 5: Magnetic susceptibility per spin,x(7') in function of the temperature, T = [0.1,5] for 3
different lattice sizes L = 6,12,18
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L C X
L=6 |Tc =240 | Tc = 2.60
L=12 | Tc =235 | Tc = 2.45
L=18 | Tc =2.30 | Tc = 2.40

Table 2: Table with the values for the critical temperature obtained by our Ising Model simulation
with Metropolis algorithm for lattice sizes L = 6,12,18. The values were estimated by finding the
temperature for the maximum values of magnetic susceptibility /chi(T) and specific heat C(T').

From the Figures above we can observe a decrease in the value of the critical point T when
the lattice size, L, decreases bringing these values closer to the theoretical value for the critical point,
To = 2.269.

4 Discussion

5 Conclusion

The simulation of the Ising model confirmed the existence of a phase transition in the absence
of an external field h. This observation becomes particularly evident by the significant change in the
magnetization that constitutes the order parameter of the system. Additionally, our simulation was
successful in proving that this phase transition is a second order one, since for increasing lattice sizes
a discontinuity starts to show up in the second derivative properties of the system, Magnetization
per spin, x(7)” and Specific Heat C(T). Also, the values predicted for the critical temperature, T¢,
were relatively close to the theoretical value T == 2.269. However, the distance between this exact
value and the experimental one decreases when we increase the lattice size, since the theoretical value
corresponds to the value found for an infinite size value.

Regarding the implementation of the Metropolis Monte Carlo algorithm we were able to confirm
its efficiency and adequacy to simulate the Ising Model. This conclusions are supported by the rapid
convergence of the simulated system to equilibrium, taking only a few minutes of personal computation
for small size lattices to obtain this state. It also stands out, the algorithm ability to predict equilibrium
values with great precision that is very evident in the close overlap between the theoretical and
simulation based results for the several system properties. Although, near a second order phase
transition the correlation length is very large, and therefore there are fluctuations on all scales. So,
our local algorithm had difficulty in sampling the space of relevant configurations efficiently. The
mean magnetization may actually be more or less correct, but more complicated observables (higher
moments of M, correlation functions, etc) are difficult to compute. Fluctuations modify the simple
mean field scaling, and e. Cluster algorithms perform updates on all scales, and capture these physical
phenomena better.

6 References
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7 Annexes

7.1 Annexes 1

//

// main.cpp

// Ising Model
//

// Created by Iris on 23/06/2018.
// Copyright (© 2018 Iris e Jodo.

//

#include <iostream>
#include <vector>
#include <sstream>
#include <iostream>
#include <array>
#include <math.h>
#include <iomanip>
#include <algorithm>
#include <stdio.h>
#include <stdlib.h>
#include <ctime>
#include <fstream>
#include <time.h>
#include <random>

using namespace std;
using std::vector;
using std::cout;
using std::endl;

All rights reserved.

int main(int argc, comst char * argv([]) {

ofstream filel("/Users/Damiao/Desktop/energial L18.txt");
ofstream file2("/Users/Damiao/Desktop/magnetizag&ol_L18.txt");
ofstream file3("/Users/Damiao/Desktop/calorl_L18.txt");
ofstream file4("/Users/Damiao/Desktop/quil_L18.txt");

std: :random_device rd;
std: :mt19937 gen(rd());

// Generates a random number

int L = 6; // Size of the lattice

int N

pow (L,2);

int z = 4; // nimero de vizinhos

13



double r;

// Inicializa a rede de dimensio N.

int matriz_inicial [N];
int nn [N][z];

// Helical- bouundary conditions - Identificag&o dos vizinhos para cada spin i

for (int i=0; i<=(N-1);i++){
matriz_inicial [i] = 1;

//Vizinhos do spin i

nn[i] [0] = (i+1)% ) ;

nn[i] [1] = (G-D%R@+@))% M) ;
nn[i] [2] = (i+L)%(N);

nn[il [3] = ((G-L)%A@) + (M)%M);

[11777777717777777777777777777777777777777777777777777777777777777777777777777777777/777777
// IMPLEMENTAR METODO DE MONTE CARLO METROPOLIS
[177777777177777777777777777777777777777777777777777777777777777777777777777/7777777777777
double J = 1;

//Intervalo de temperatura considerado

double tStep=0.05;
double Tmax=5;

int nmonte
int nrelax

10000000;
10000000

int rl; //dois nimeros aleatérios
std::uniform_int_distribution<> dis_int(0,N-1);
double r2;

int energias [z+1];

double d_e;
double A;

for(double T=0.1;T<=Tmax;T=T+tStep){
cout << T << endl;
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// Relaxacg8o
for (int n=0; n<=nrelax; n++){

d_e = 0;

rl = dis_int(gen); // 1 passo gerar um flip aleatério

d_e = 2*%Jxmatriz_inicial[ri1]*(matriz_inicial[nn[r1] [0]]+matriz_inicial[nn[r1][1]]+
if (d_e <= 0){

matriz_inicial [ri1] = (-1)*matriz_iniciallril];
}
else {
A = exp((-1/T)*(d_e));
r2 = std::generate_canonical<double, 10>(gen);
if (r2<a){
matriz_inicial [r1] = (-1)*matriz_iniciall[ril];
}
}

// Equilibrio - Relaxagdo - Onde se calculam as varidveis termodindmicas

double m=0; //Magnetizag8o total
double h=0; //Energia Total - Hamiltoniano

// Para calcular os valor de energia do sistema inicial assim como de magnetizagio

for (int i=0; i<=(N-1);i++){
h =h -((0.5)*matriz_inicial[i]l*(matriz_inicial[nn[i] [0]]+matriz_inicial[nn[i] [1]]

m =m + matriz_iniciall[i];

double H = 0;
double M = 0
double H2 = 0;
double M2 = 0;

for (int n=0; n<nmonte; n++){

d_e=0;
rl = dis_int(gen); // 1 passo gerar um flip aleatério
d_e = 2%Jxmatriz_inicial[ri]l*(matriz_iniciall[nn[r1] [0]]+matriz_inicial[nn[r1][1]1]+
if (d_e <= 0){

matriz_inicial [r1] = (-1)*matriz_iniciall[ri];

h=h + d_e;

m=m + 2*matriz_iniciall([ri1];

}
else {
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if (r2<A){

= =
nn

H2
M2

double E

double M_

H2
M2

double E1
double M1

double ¢

A

exp((-1/T)*(d_e));

r2 = std::generate_canonical<double, 10>(gen);

matriz_inicial [r1] = (-1)*matriz_iniciall[rl];
h=h+ d_e;

m

H2+h*h;
M2+m*m ;

av

av

double Xi =

filel <<
file2 <<
file3 <<
filed <<

}

return O;

7.2 Annexes 2

T <<
T <<
T <<
T <<

= (H + h);
(M + fabs(m));

m + 2*matriz_iniciall[ril];

}

(H/N)/(nmonte) ; //Energia média por spin
((M)/N)/(nmonte); // Magnetizagdo média por spin

H2/ (nmonte) ;
M2/ (nmonte) ;

(H)/ (nmonte) ;
(M) / (nmonte) ;

(H2-(E1%E1) )/ (T*T*N); // Calor especifico por spin
(M2-(M1%M1))/(T*N); // Susceptibilidade por spin

<< E_av << endl;;
<< M_av<< endl;
<< ¢ << endl;

<< Xi << endl;
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